New Ways for Image Manipulations: Color, Size and Structure

Ariel Shamir
The Interdisciplinary Center
Israel

The Power of Images

Earth as viewed from the Moon during the Apollo 8 mission, Christmas Eve, 1968

Paris~1838: Louis-Jacques-Mandé Daguerre

~ 1940

After 1940

OK

Cancel <u>L</u>oad...

<u>S</u>ave...

Colorize

Preview

0

0

0

Saturation:

Lightness:

Changing Colors

Lior Shapira · Ariel Shamir · Daniel Cohen-Or

Image Appearance Exploration by Model Based Navigation
Computer Graphics Forum, Volume 28, Number 2, Eurographics 2009
Recieved the Eurographics 2009 Second Best Paper Award!

BibTeX More »

Changing Colors is Difficult

■ Global changes → limited

■ Local changes → tend to create unrealistic artifacts

Changing Colors is Tedious

Change to What Color?

Our Approach

Representing Color

Each Pixel can be seen as a 3D point in RGB space:

A 3D histogram of color values

Part 1: Parametric Modeling of the Image Colors

- More natural color spaces: HSV, Lab
- We use the 2D color channels and fit a Gaussian Mixture Model to the pixel colors histogram in these spaces

Association of Pixels

 Each pixel in the image is associated with a probability vector of matching each Gaussian

$$p = (p_1, ..., p_k)$$
 s.t. $p_i = P(x \mid C_i), \sum_{i=1..k} p_i = 1$

Key Idea

Changes in Model Parameters Leads to a Change in the Image

Model Parametric Changes

Gaussian Mixture Model, K=3

New Pixel Color

- After transformation, the Guassian $\sim N(\mu_i, \mathbf{C}_i)$ has a new mean and covariance matrix $\sim N(\mu_i^{new}, \mathbf{C}_i^{new})$
- A pixel color x is transformed by the operations on Guassian i as follows:

$$x_i = \mathbf{C}_i^{new} \cdot \mathbf{C}_i^{-1} \cdot \left((x - \mathbf{\mu}_i) + \mathbf{\mu}_i^{new} \right)$$

The new pixel color is given by the weighted average of all new colors created by all Gaussians:
√
√
new
√
√
new

$$x^{new} = \sum_{i=1}^{k} p_i x_i$$

Synthesizing New Image: Simple Example

Combining Complex Transformation

Gaussian Mixture Model, K=3

 $Complex\, Transformation$

Part II: Navigation in Appearance Space

 Once we have a way to synthesize new images based on changing a parametric model we can build a simple algorithm:

```
10 Sample parametric space
20 Synthesize images
30 Display to user
40 Accept user feedback
50 Goto 10
```

User Interface Challenges

- How to display the image results?
- How to let the user interact with them?

Map from High Dimension to 2D

Spatial Considerations

Complex colors may cause spatial artifacts

 To reduce these, we use a natural edge map and apply a median-filter on each pixel's probability vector

Other Use of Parametric Color Model

 Defining image regions to extract the head by defining the characteristic color of face (skin colors), hair (hair colors) and background.

Synthesize to Change Skin Color

Mapping the extracted face skin color to all skin regions:

Identity Transfer

Identity Transfer

Image Composition

Shape Retargeting

Which is Fake?

Which is Fake?

Changing Size

Michael Rubinstein · Ariel Shamir · Shai Avidan

Multi-operator Media Retargeting

ACM Transactions on Graphics, Volume 28, Number 3, SIGGRAPH 2009

BibTeX More »

Ariel Shamir · Shai Avidan

Seam Carving for Media Retargeting

Communications of the ACM, Volume 52, Number 1, Pages 77–85, January 2009

BibTeX More »

Michael Rubinstein · Ariel Shamir · Shai Avidan

Improved Seam Carving for Video Retargeting

ACM Transactions on Graphics, Volume 27, Number 3, SIGGRAPH 2008

BibTeX More »

Shai Avidan · Ariel Shamir

Seam Carving for Content-Aware Image Resizing

ACM Transactions on Graphics, Volume 26, Number 3 SIGGRAPH 2007

BibTeX More »

Content Aware

Scale

Crop

Our Approach

A Seam

Seam Carving

A Local Operator!

Width is one pixel smaller

Finding the Seam?

The Optimal Seam

$$E(\mathbf{I}) = \frac{\partial}{\partial x} \mathbf{I} + \frac{\partial}{\partial y} \mathbf{I}$$
 $\Rightarrow s^* = \underset{s}{\operatorname{arg min}} E(s)$

How Many Possible Seams?

- An image has n columns and m rows
- Start from any pixel at top row (n)
- For each one choose between 3 possible pixels in the next row
- For each one of those, choose between 3 in the next row...
- $n*3^{m-1}$ = exponential! \otimes

Pixel Attribute → Dynamic Programming

5	8	12	3
9	2	3	9
7	3	4	2
5	4	7	8

Dynamic Programming

5	8	12	3
9	2+5	3	9
7	3	4	2
5	4	7	8

Dynamic Programming

5	8	12	3
9	7	3+3	9
7	3	4	2
5	4	7	8

Dynamic Programming

5	8	12	3
9	7	6	12
14	9	10	8
14	13	15	8+8

Searching for Minimum

5	8	12	3
9	7	6	12
14	9	10	8
14	13	15	16
			

Backtracking the Seam

5	8	12	3
9	7	6	12
14	9	10	8
14	13	15	16

Backtracking the Seam

5	8	12	3
9	7	6	12
14	9 /	10	8
14	13	15	16

Backtracking the Seam

5	8	12	3
9	7	6	12
14	9 /	10	8
14	13	15	16

The Cost Matrix & Seam

Inserting a Seam?

Width is one pixel larger

Duplicate Seams in Order

Duplicate Seams in Order

Enlarged or Reduced?

Not Always a Success

Find the Missing Shoe!

Solution

Video As Well

Fabricating an Whole Image

Tao Chen \cdot Cheng Ming Ming \cdot Ping Tan \cdot Ariel Shamir \cdot Shi-Min Hu

Sketch2Photo: Internet Image Montage

ACM Transactions on Graphics, Volume 28, Number 5, SIGGRAPH ASIA 2009

BibTeX More »

Find,

Find, Cut & Paste

Challenges

- Image search
- Image comparison
- Image segmentation
- Image composition
 All Very difficult problems in general!
- Key idea:

Make the problems simpler by using simple images!

→ Extensive filtering

Find?

Where do you find anything today?

Filtering

Query:

Shape Filtering

Filtering

 Small total number but large ratio of "good images" (around 80%-90%)

Extensive filtering work only because we have the Internet

Composition

Target Image

Takes Time...

And...

Not Always a Success

More Results

More Results

More Results

Do images convey reality?

Maat Mons on Venus
Vertical exaggeration of 22.5 times

http://photojournal.jpl.nasa.gov/catalog/pia00254

More information: http://www.faculty.idc.ac.il/arik/